
Spatial SQL
A hands-on workshop on using spatial data in database management systems, specifically PostgreSQL.

Author: John Reiser jreiser@njgeo.org

Getting Started
Online Resources
Links to other resources, the workshop data, and updates to any of the workshop materials will be available at
http://learnspatialsql.com/

Downloading a digital version of this workbook from the website above is strongly recommended.

Pre-requisites
Install PostgreSQL
Install PostGIS extension
Install and configure a SQL GUI
Install a Desktop GIS
Load workshop data into your database

Installing PostgreSQL
PostgreSQL is an open-source, ACID-compliant, transactional relational database management system (RDBMS)
that is available on Windows, MacOS, and Linux.

As of September 2018, the current stable release of PostgreSQL is 10. While version 10 is preferred, you should
use PostgreSQL 9.4 or greater to complete this workshop.

If you are planning to use PostgreSQL with ArcGIS 10.6, you should install the latest version of
PostgreSQL 10. ArcGIS 10.5 only supports PostgreSQL 9.5 and ArcGIS 10.4 only supports
PostgreSQL 9.4. View Esri's documentation on PostgreSQL requirements for more information.

Downloading PostgreSQL: https://www.postgresql.org/download/

If you are using macOS and would like a simple installer, you should instead use Postgres.app
http://postgresapp.com/. This installer will include PostGIS. Using Postgres.app in a production environment is
strongly discouraged.

Usernames and Passwords
When installing PostgreSQL (either the official distribution or the Postgres.app application on macOS) you will be
prompted to set the password for the "postgres" user. For the purpose of this workshop, you can continue to use
the "postgres" user, as it is a "superuser" account and will not be limited with what you are able to do to the
database. Do not forget your password for the "postgres" account.

Some distributions of the PostgreSQL database, such as Postgres.app, may be configured to allow any user to
connect without a password, provided they are logging into the database locally and not over a network
connection. In this case, you will not need to specify a password when logging in.

Spatial SQL Workbook

1 of 24

Operating as the "postgres" or any other superuser in a production database without fully understanding
what you are doing is very dangerous. As you hopefully move to adopt PostgreSQL in your organization, you
should consult with a database administrator to determine the proper configuration of users, roles, and
permissions.

Installing PostGIS
PostGIS is an extension to the PostgreSQL database that enables the storage, modification, and analysis of
geographic data.

Downloading PostGIS: http://postgis.net/install/

If you are using Postgres.app, you do not need to install PostGIS. It is already installed.

Install and configure a SQL GUI

If you are new to working with SQL and databases, a
graphical user interface (GUI) can be very helpful. There are a
variety of SQL GUIs and integrated development
environments (IDEs) that you can use to work with a
PostgreSQL database.

pgAdmin https://www.pgadmin.org/
TOAD Data Modeler https://www.toadworld.com/
PSequel http://www.psequel.com/
and many more...

For this workshop, we will be using the pgAdmin GUI.
pgAdmin was designed with PostgreSQL in mind. Unlike
some of the other user interfaces, the terms used in the GUI
will be Postgres-specific.

We will be using the latest version of pgAdmin 4, which as of this writing is pgAdmin 4 v3.4. You can get pgAdmin
from their download page: https://www.pgadmin.org/download/

Installing the Workshop Data
To get you started with the workshop, we will be using data from the Natural Earth dataset. The tables used in the
workshop examples have already been exported to a PostgreSQL "data dump" file. This is a custom format that
can be used to quickly import data into a PostgreSQL database, preserving many data objects, attributes, and
permissions.

You can download the Workshop Data File from the LearnSpatialSQL download page:
https://www.learnspatialsql.com/downloads/.

Once you have downloaded the file, you can use pgAdmin to import the data into a new database for you. The
dump file contains an entire database snapshot, so when using the import capability of pgAdmin, make sure you
also select ☑ Include CREATE DATABASE statement that will create the workshop database for you.

Install Desktop GIS

QGIS
If you do not have access to a desktop GIS, QGIS is an excellent open-source desktop GIS. You will be able to
work with PostgreSQL tables and read and manipulate PostGIS spatial columns.

Spatial SQL Workbook

2 of 24

QGIS is available at http://qgis.org/

ArcGIS for Desktop
If you have ArcGIS for Desktop, you can connect to PostgreSQL databases. The necessary libraries are included
with ArcGIS starting at version 10.4.

Esri has more on how to obtain and install the necessary libraries for ArcGIS for Desktop 10.3 or
earlier.

Using Amazon Web Services
An alternative to installing PostgreSQL on your own machine is that you can use a pre-configured instance of
PostgreSQL and supporting applications on Amazon Web Services.

Note: using Amazon Web Services will require creating an account with AWS and using a credit card to cover the
charges incurred. The estimated cost of running an AWS EC2 (virtual server) instance for 8 hours is likely to be
less than 1 dollar. However, even when the server is off, you may be charged for the storage. Nonetheless, this is
an easy way for you to get started with PostgreSQL (and cloud computing) if you do not have the ability or desire
to install the software on your personal computer.

For more information on the AWS-hosted learning environment, please see https://learnspatialsql.com/cloud/.

Introduction Spatial SQL
GIS data that you have used in the past has likely fallen into one of two categories:

Local GIS data, where you must download and maintain it, but are free to alter it as you see fit.
Web-based GIS services, where you can use it, however you often do not have the ability to make changes
to the data and how it is presented.

Connecting to a database is similar to a GIS service (e.g. ArcGIS MapService, WMS, WFS, etc.), but with a few
distinctions:

While a database is often hosted on a different computer than the one you are using, it is likely on the same
physical network.
A client-server relationship, however the client and server are more tightly integrated.
Tighter integration is due to the greater functionality provided to clients.

You will be connecting to a database server hosted on your same computer. You can use the special network
name of "localhost" to refer to your own computer when connecting to the database.

Database Object Hierarchy
Think of how PostgreSQL handles data this way:

A record is a single item that is composed of a list of properties. For instance, a record for a US State
would contain the state's name, population information, date of admission to the Union, and a
representation of its shape. Each of these properties would be stored in a column.
A table is a set of records that have the same list of columns. A definition of the table's list of columns is
called a table schema. You will define a table schema when you run a CREATE TABLE function to make a
new table. When you run CREATE TABLE AS SELECT... the database infers the table schema from the

Spatial SQL Workbook

3 of 24

set of records returned.
In PostgreSQL parlance, a group of tables that have a need for a logical grouping are placed together in a
schema. A schema helps keep tables, views, types and functions organized within a database.
A database is a set of schemas and tables. Data can be easily passed between tables in different schema.
Data cannot be easily transferred between databases without making one or more connections to the
databases participating in the data transfer.

In PostgreSQL, you can use the pg_dump and pg_restore tools to export and import data from databases. You
can also use the powerful Foreign Data Wrappers to connect to other databases or non-Postgres sources of data,
such as Oracle, CSV files, or even web services.

In this workshop, we will only be working with one database and we will have exclusive access to that database.
However, your PostgreSQL instance can support many databases and provide access to many users over the
network.

A database server is software that provides access to the databases maintained on a computer. The
database server handles networking and access control, so that only certain computers and users have
access to the databases.
A database cluster is a series of computers that collaboratively handle databases. Data is often
transferred between database servers within the database cluster using server-level replication. Coupled
with load balancers, database clusters are the brains behind many massive web applications today.

Think of it as a hierarchy, where elements of one level of the hierarchy contain all of the elements of the next
hierarchical level.

Clusters > Servers > Databases > Schemas > Tables > Records.

In practice, your database server may reside on your desktop GIS workstation, and you may only have one
database on the server. For instance, you could have a database called "GIS" and keep your data grouped into
schemas, such as a "flood" schema containing tables which in turn store map features related to the National
Flood Hazard Layer. In that case, you'd have:

localhost Server > GIS database > flood schema > flood_zone table > flood zone record.

Your desktop GIS knows how to retrieve, manipulate, and display the data within the records as GIS data, the
same way as it would work with a file-based data format. As we'll see by the end of the day, having the database
manage some of the work of processing and manipulating the spatial data will open up many opportunities for
more efficient workflows and quality control checks.

It may seem like a lot, but all of this technology working in concert enables some amazing things:

Tens of thousands of simultaneous reads and writes.
Multiple users that can share information and remain compartmentalized.
ACID Compliance.

Atomicity: Transactions can be performed. Changes made during a transaction will only be stored
in the database once the transaction is committed. Transactions can be rolled back to the previous
state.
Consistency: Transactions must contain valid data. If not, the transaction is rolled back.
Isolation: Allows for multiple users/transactions to work in concert without impacting other's work
in unforeseen ways.
Durability: Once a transaction has been committed to the database, it will remain in that state until
another successful transaction alters it.

To begin harnessing the power of databases, we will need to learn how to speak their language. The language
used by most RDBMSs today is Structured Query Language, or SQL. It is a declarative programming language,

Spatial SQL Workbook

4 of 24

setting it apart from other languages, such as Python and Java.

Speaking SQL
You have likely used some SQL previously when working with GIS. In
ArcGIS, the Select By Attribute tool is very helpful in selecting a subset of
features using a set of user-defined criteria.

You may not have noticed it, but the bottom text area in the Select by
Attribute window is labeled with:

SELECT * FROM table_name WHERE:

When using Select by Attributes, you are writing a SELECT statement, the
first type of SQL statement we will discuss. Before we can begin speaking
SQL, we will need to connect to our database.

Connecting to the Database
We will use both QGIS and pgAdmin simultaneously, so that you can see
both the visual representation of the data in QGIS and the tabular,
structural view of the data in pgAdmin.

To get started with QGIS, open the spatialSQL.qgs map document.

Upon opening the map document, you may find that the data displayed seems familiar. This data is from the
Natural Earth dataset. Throughout this assignment, we will be using the following data:

Admin 1 - States, Provinces
Populated Places
Urban Areas

All of the Natural Earth data is at the 1:10m scale. Each dataset has been imported to the workshop database
and stored within the public schema.

To get started with pgAdmin, refer to the documentation on connecting to a database.

When you initially set up your database, you specified an administrator – typically the "postgres"
account. You can use that account for the remainder of the workshop, however you will likely need to
set up other users and roles if you are going to use this database in a multi-user, production
environment.

First SQL statements
SQL is a declarative language. You declare what data you would like to receive back from the database server.
You can make simple or very complex statements to the database server that will return what you need.

The most basic request for data follows this form: SELECT * FROM tablename; . FROM and SELECT are called
SQL clauses and they denote the types of data - whether within the database or provided by the user to alter the
query - used in the SQL statement. While FROM and SELECT are almost always present when querying for data,
the following clauses are available when constructing a SELECT statement.

SELECT
FROM

Spatial SQL Workbook

5 of 24

JOIN
WHERE
GROUP BY
HAVING
ORDER BY
LIMIT

These clauses, however, are executed in a specific order, as such:

FROM / JOIN1.
WHERE2.
GROUP BY3.
HAVING4.
SELECT5.
ORDER BY6.
LIMIT7.

This order of operations is important to consider as we move forward; as your queries become more complex, it
will be difficult to troubleshoot queries that are invalid or inefficient. In many cases, violation of the order of
operations will lead to invalid SQL or queries that are incredibly slow.

Let's start by exploring the public.admin1 table that we've already viewed using QGIS.

Remember, SQL statements take this basic form: SELECT * FROM tablename; , so let's make that request in
pgAdmin. Once you are connected to the database, click on the SQL Query button and enter the following:

SELECT * FROM public.admin1;

In the lower half of the window, you will see all of the columns (the asterisk denotes all columns) and all of the
records (we did not limit what was returned with a WHERE statement) for the public.admin1 table.

Limiting the results
Let's add a WHERE statement to limit the number of records returned. We will use the contents of a column to
limit the results to those records to just those dealing with United States features.

Type the following into the SQL Query window and run the query. How many results are returned?

SELECT * FROM public.admin1;

It would be easier to see what is returned if we limit the columns returned to just the relevant columns. Add the
sov_a3, geonunit columns to your SELECT query.

SELECT sov_a3, geonunit FROM public.admin1;

It would also be helpful to order the records by the contents of certain columns. Let's sort on the geonunit
column.

Spatial SQL Workbook

6 of 24

SELECT sov_a3, geonunit
 FROM public.admin1
 ORDER BY geonunit;

This can also be written as:

SELECT sov_a3, geonunit FROM public.admin1 ORDER BY 2; with the number representing the column to
sort. Count from the left-most column, starting with 1.

There's still a large amount of columns returned and many duplicates. You can use the DISTINCT keyword to tell
the server that you want a unique set of records returned.

SELECT DISTINCT sov_a3, geonunit
 FROM public.admin1
 ORDER BY 1, 2;

Read through the returned records. What could you use to limit the results to just the US states? Now try the
following query. The addition of the name column will return the names of the second-level administrative
divisions.

SELECT DISTINCT sov_a3, geonunit, name
 FROM public.admin1
 ORDER BY 1, 2, 3;

From here, write an SQL statement that will return 51 rows (the United States plus the District of Columbia) with
only 1 column: name . It should look similar to this:

SELECT name
 FROM public.admin
 WHERE [...]
 ORDER BY 1;

Note that the columns used in the WHERE statement are not required to be included in the list of columns
returned.

Using Functions to Alter Output
Run the following query. It should only return one record, because New Jersey is one-of-a-kind.

SELECT name, shape
 FROM public.admin1
 WHERE name = 'New Jersey';

Taking a look at the shape column, you should see a string of unintelligible columns. This is a binary
representation (Well-known Binary) of the Geometry data stored in the shape column.

In our SELECT statements, we can use a variety of functions to alter the values in those columns as they are
returned by the database. Two functions, ST_AsEWKT() and ST_AsGeoJSON(), accept geometry data and return

Spatial SQL Workbook

7 of 24

text representations of the data. Try out the following two statements.

SELECT name, ST_AsEWKT(shape)
 FROM public.admin1
 WHERE name = 'New Jersey';

SELECT name, ST_AsGeoJSON(shape)
 FROM public.admin1
 WHERE name = 'New Jersey';

Functions can also be nested, so that the results of one function can then be passed to the outer function in the
nested list. For example, we want New Jersey's shape in WKT format, but we want it projected into New Jersey
State Plane. Remember, functions can return data in different types and functions expect data of specific types,
so the order in which the functions are called is very important.

ST_Transform() is a PostGIS function that changes the projection of the Geometry in a column to a specified
projection. Projections are represented using Spatial Reference IDs (SRID). These IDs are stored, along with the
projection information, in the public.spatial_ref_sys table.

While you could look up the SRID for New Jersey State Plane, I'll save you the trouble and let you know that the
SRID is 3424.

The output of the ST_Transform function is Geometry binary data, which we can then pass into any function
expecting Geometry data.

SELECT name, ST_AsEWKT(ST_Transform(shape,3424))
 FROM public.admin1
 WHERE name = 'New Jersey';

You will see that the coordinates and the SRID are different from before. If you're unsure of the difference in
coordinates, you can specify a column more than one time in a SELECT statement.

SELECT name,
 ST_AsEWKT(ST_Transform(shape,3424)) as stateplane,
 ST_AsEWKT(shape) as latlng
 FROM public.admin1
 WHERE name = 'New Jersey';

After each column name, you can specify a new column name. In the previous example, we changed the output
name of the two ST_AsEWKT functions to "stateplane" for the one with an inner ST_Transform() and "latlng"
for the one in its native WGS84 coordinate system.

Another PostGIS function is ST_Centroid(). Given a line or polygon geometry, ST_Centroid() returns a point
representing the center of that object. Can you create a SELECT statement that returns the center point of New
Jersey in New Jersey State Plane?

Creating a New Schema
Let's now explore how to make new tables based on the results from a SELECT statement. Using QGIS, take a
look at the "places" data. You can see that the table has a large amount of columns, with populated places
outside of the US. To work on this data, you will want to make a copy of the table in your own schema. However,
when making the copy, you want to reduce the number of columns and select only the records that relate to US

Spatial SQL Workbook

8 of 24

cities and places.

In your Query Window, type in the following:

CREATE SCHEMA workspace;

This will create a new schema in which you can store tables, views, and other database objects. When the query
planner looks for database objects, it follows a search path, similar to the PATH variable in your operating system.
To include this new schema in the path, issue the following command to your database:

ALTER DATABASE workshop SET search_path = "$user",workspace,public;

As an aside, the "$user" portion of the command above lets the database know that it should search a schema
that shares its name with the current user first. While this might not be applicable for this workshop, it is good
practice once you have multiple users in your database.

Going forward, to reference mytable table in your workshop schema, you will only need to refer to the table as
mytable instead of workshop.mytable . You should keep in mind that if you create a table in your schema
called admin1 , the database will refer to workspace.admin1 instead of public.admin1 , because workspace
is listed in the search path before public .

Creating a new table
First, the simple task should be to select just the US places. Use a where statement to limit the records returned
to just those in the US.

We also want the following columns in our new table:

id - the Primary Key to the table. Primary Keys are unique values that the database can use to keep track
of records. Primary Keys are not required, despite this, you should always have a primary key. Considering
we're making a new table as a subset of an existing table, we can use the same column as primary key in
the new table. Primary Keys can also be designated from multiple columns; this is called a Composite Key.
shape - we want to map these points in the future, so we want to bring them over to the new table.
name - name of the populated place.
adm1name - Admin Level 1 name. In this case, it's state name. Rename this column in your SELECT
statement to state.
pop_max, pop_min, pop_other - columns containing different population estimates.
max_areami - generous estimate of the size of the city/place in square miles. Rename this to areasqmi.
elevation - estimated elevation of the city/place in meters.
timezone - name of the time zone in which the city is located.

First, build your SELECT statement and confirm that it is valid. Run it to ensure you are happy with the results.
Double check that you have the proper columns included and that you've correctly renamed the columns in the
statement.

Once your SELECT statement is returning the desired data, it is very easy to make that a table within your own
schema. You can use the CREATE TABLE [tablename] AS SELECT... statement to put the results of your
SELECT into a table. It should look something like the following:

Spatial SQL Workbook

9 of 24

CREATE TABLE workspace.usplaces AS
 SELECT [list of columns]
 FROM public.places
 WHERE ISO_A2 = 'US';

Using Functions to Calculate New Values and Creating
Views
We can also use aggregate functions to calculate statistics on records within a table.

Let's first create a SELECT query that counts the number of city/place points within each state. We will use the
count() function and the GROUP BY clause to count up the number of points within each unique value in a
column.

SELECT state, count(*)
 FROM workspace.usplaces
 GROUP BY state
 ORDER BY state;

How many points are in New Jersey? California? Alaska?

Count of points alone does not give us a good indication of population by state. Granted, we will be missing most
of the population of a state if we only add up the population of the cities represented in this data, but it should
give us a better reflection of population. We can use the SUM() function to sum up the population of the places in
each state.

SELECT state, count(*), sum(pop_max)
 FROM workspace.usplaces
 GROUP BY state
 ORDER BY state;

What's the sum of the population column for New Jersey? Alaska? This is perhaps a better indication of density,
however it's still not perfect. What if we wanted the average value of the population in the place points table? Can
you create a SELECT that shows state name, average of the pop_max field, and count of points? Once you get
the SELECT query working, create a table view of the query. A table view is essentially a query stored in the
database that is presented to users as a table. There is no actual table, instead the view references other existing
table(s) when called.

The difference in syntax for creating a new table from a SELECT and a new view is simply:

CREATE VIEW workspace.placestats AS SELECT [...];

PostGIS also has spatial aggregators, that can perform what would be considered a Dissolve in ArcGIS.
ST_Union() , when used with a GROUP BY clause , will dissolve the spatial features together and return a new
set of spatial features.

Return to QGIS and look at the admin1 features. Notice there is a 'region' column in the admin1 table. Let's
make a view that will merge the geometries of the US states together on the fly.

Spatial SQL Workbook

10 of 24

First, we want to limit our set of output records to just the US. We'll again use iso_a2 = 'US' to limit our set of
records from approximately 4,000 polygons down to the 51 that make up the US States (and DC).

We'll also group on the contents of the region column. If you execute the following query, you'll see that there
are only four values in the region column for our subset of data.

SELECT DISTINCT region FROM public.admin1 WHERE iso_a2 = 'US';

We should expect 4 records - and thus 4 multi-part polgyons - returned from our SELECT query.

We will also need to provide our view with a unique ID number, so that GIS packages can use it as the primary
key. The public.admin1 table already has a primary key in the id column. However, we can't use the id in our
SELECT query as-is, because it will then need to be put into the GROUP BY clause. If we group by a unique
value, none of the output records will be merged. What we can do is take either the minimum or maximum of the
id column for that set of records that share the same value in the region column. The functions min() and
max() work with a GROUP BY clause and will return a unique value within the set. Then, when loaded into QGIS
or ArcGIS, the product of min() or max() can be used as the ObjectID/Primary Key.

Create your view like the following:

CREATE OR REPLACE VIEW workspace.usregions AS
 SELECT min(id) AS objectid, st_union(shape) AS shape, admin1.region
 FROM admin1
 WHERE admin1.iso_a2 = 'US'
 GROUP BY admin1.region;

Confirm that your view works by viewing it in QGIS or ArcGIS. Note that it may take some time to draw because
the database is storing the individual states and their geometries as records in a table. The regions are created
dynamically upon retrieval.

Exploring New Data
Return to pgAdmin review the public schema, as we will begin using some of the additional tables in the schema.
Let's first explore the public.us_state_info table, which has information about the 50 United States and the
District of Columbia. There are columns in this table that match those in the public.admin1 table, so you will be
able to join this additional information to the spatial table.

Open the SQL Editor, run the following and inspect the output rows.

SELECT * FROM public.us_state_info;

The us_state_info table has 7 columns. Two of the columns, population and houseseats, are integer values,
while the rest are text values. While there are some variations (bigint versus integer, character varying versus text)
the types of columns are essentially text and integers. One column should stand out, as there is a more
appropriate column type for storing date and time values.

Run the following statement, ordering the rows in the us_state_info table by date admitted to the Union.

SELECT * FROM public.us_state_info ORDER BY statehood;

Spatial SQL Workbook

11 of 24

What's wrong with the sort order?
Why do you think it is ordering the results in the way that it is?

Working with Different Data Types
You can use the CAST() function to dynamically change the type of the data. Rewrite the above statement, but
now order on CAST(statehood AS date) and see how the results differ. Luckily, PostgreSQL is good at
guessing how text should be interpreted as date or time values. You would experience problems, however, if the
date was represented in text as "04/06/12", because the SQL interpreter would not know if the date is:

MM/DD/YY: April 6, 2012 (or 1912)
DD/MM/YY: June 4, 2012 (or 1912)
YY/MM/DD: June 12, 2004 (or 1904)

When specifying dates, you should use a simple and unambiguous format for your dates. ISO 8601 outlines
standards for representing dates. First, you will always use 8 digits to represent the date. This means that day 4
will be represented as "04". Secondly, you will specify a date using the YYYY-MM-DD format. For example, this
workshop falls on October 24, 2018 or, "2018-10-24".

Let's now select only the records for states admitted to the Union after 1875. Simply doing the following will not
work:

SELECT * FROM public.us_state_info WHERE statehood > 1875;

If you were to attempt this, you would receive the following back as an error:

ERROR: operator does not exist: text > integer

The greater than and less than operators will work for numeric (integer and decimal) as well as for date and time
values. You must explicitly define both operands as date values in order for the comparison to work.

Try the following:

SELECT * FROM public.us_state_info
WHERE CAST(statehood AS date) > CAST('1875-12-31' AS date);

You need to put the date value in single quotes to first make it text, otherwise, the SQL interpreter might attempt
to subtract the month and day from the year and return an integer. Then you can use CAST to change the text to a
date type.

There's also a PostgreSQL-specific shortcut for the CAST function. You can write it like so:

value::type

The previous SQL statement could then be written like so:

SELECT * FROM public_us_state_info
WHERE statehood::date > '1875-12-31'::date;

Spatial SQL Workbook

12 of 24

Know Your Types
Making sure the right types of values are used is incredibly important. The functions will often perform specific
tasks based on the input types and will return values of a type based in the input.

For example, try the following:

SELECT 1/4;

What value is returned? What is the type of the value returned? While we would naturally expect to receive a
decimal type when calculating 1/4, all the database knows is that you are working with two integer values and
thus you want an integer value returned. You will need to be explicit with your type values so that you receive data
back in the proper type.

Here's several ways you can have the database return the correct value of 0.25 for the calculation 1/4:

SELECT CAST(1 as numeric)/CAST(4 as numeric);
SELECT 1::numeric/4::numeric;
SELECT 1.0/4.0;
SELECT 1/4.0; -- just the denominator works, too.

And you can always put in type modifiers (e.g. character varying (length) or numeric(precision, scale)) so that the
database returns exactly what you want. If you know that you will always receive decimal values between 0 and 1
and you only want two significant digits, then you can put a modifier after the numeric type to return exactly that.

SELECT (1.0/4.0)::numeric(3,2);
-- returns 0.25

-- But you need to be mindful of the types inside the parentheses:
SELECT (1/4)::numeric(3,2);
-- returns 0.00
-- calculates 1/4 using integers, then formats numeric
-- the order of operations counts when dealing with functions!

Finally, you can name the new column on output, just as you'd name or rename any other column.

For example, if you were to run the following SQL statement:

SELECT state, statehood::date AS admission
FROM public.us_state_info;

You would cast "statehood" column from text to date, then rename the column to "admission". This will become
important when we make new tables from the results of SELECT statements. SELECT has no problem returning
columns without names, however CREATE TABLE AS requires that every column in the SELECT query has a
name.

Selecting from Multiple Tables
Let's work on bringing our us_states_info table into a new table that will incorporate a subset of the admin1
data with the columns from us_states_info . You may want to revisit the admin1 table with a SELECT * FROM

Spatial SQL Workbook

13 of 24

public.admin1; to remind you of the numerous columns in that table.

Here's the columns we want to include in our final table:

From admin1:
id (as our primary key)
shape
name
region
postal

From us_state_info:
statehood (as a date type - and remember to name it 'statehood')
capital
largestcity
population
houseseats

While they will not be included in the final table, you will also need to use the following columns:

abbr in us_state_info - You will need this field to match up records in admin1, using the postal column.
iso_a2 in admin 1 - Without this, you will not have a proper match. You need to limit the rows from admin1
to just those dealing with the United States. For example, try the following SQL statement to see how many
additional matches would occur when attempting to pair up the us_states_info record for Minnesota with
values from admin1.

SELECT iso_a2, gn_name, postal, name
FROM admin1
WHERE postal = 'MN';

Writing our INNER JOIN
If you recall, INNER JOINs follow this structure:

SELECT [columns]
FROM [table 1]
JOIN [table 2] ON
[table 1].[column] = [table 2].[column];

Normally, when specifying columns from multiple tables, you include the table name and the column name. For
example, "statehood" would be referred to as "us_state_info.statehood". That would be painful to write out each
table name repeatedly, so you can use short aliases to refer to each table in an SQL statement. These aliases can
be as short as one character. For example, we will use "a" to refer to public.admin1 and "i" to refer to
public.us_state_info.

Here's a nearly complete SQL statement.

Spatial SQL Workbook

14 of 24

SELECT a.id, a.shape, [rest of the columns]
FROM public.admin1 a
JOIN public.us_state_info i
ON a.postal = i.abbr
WHERE a.[...] ;

Using the list above, it's up to you to specify the remaining columns and add the correct WHERE statement.

Once you have added the missing components, run the SELECT statement to preview the results and then use
CREATE TABLE ... AS SELECT ... to make a new table in your schema with the 51 records for the US. Save the
new table in your schema as "usstates", to go along with your "usplaces" table created in the last assignment.
Refer back to the previous assignment if you need a reminder on CREATE TABLE ... AS syntax.

You should also know that is a shorthand for declaring an INNER JOIN. Remember, an INNER JOIN is a subset of
the Cartesian Product of two tables, keeping only the records that have matching values in specific columns. The
following statements would produce the same results:

 SELECT x.col1, y.col2
 FROM table1 x
 JOIN table2 y
 ON x.key = y.key;

 SELECT x.col1, y.col2
 FROM table1 x, table2 y
 WHERE x.key = y.key;

It is recommended that you use the more explicit form of joining tables until you are very familiar with performing
these tasks. If you do happen to make a mistake, the SQL interpreter will give you more helpful feedback when
using the explicit form of JOIN.

One last bit of maintenance - we want to use the "id" column as our primary key. While it was the primary key in
the admin1 table, the primary key designation does not follow it over to the new table. You will need to explicitly
define the primary key for the table. You can do so through the ALTER TABLE statement.

 ALTER TABLE workspace.usstates ADD PRIMARY KEY (id);

Performing Spatial JOINs
Now, we have two tables in our personal schema: usplaces (points) and usstates (polygons). There are several
different ways to spatially relate features to one another. We'll explore Contains and Within to perform some
analyses.

Count of Places within each State
Your usplaces table should contain a "state" field. We will use both the "state" field and the "shape" field to JOIN
the usplaces and usstates tables together. We can also check to see if any of the values in the usplaces.state
column are incorrect - assuming that we are confident in the accuracy of each table's spatial values.

A thought exercise to check your work
A couple things to do first. Get the row count for both of your tables and write them down somewhere. Knowing

Spatial SQL Workbook

15 of 24

the count of rows on both tables will help you troubleshoot problems if you believe you are not receiving the
expected results.

Given that usstates should have 51 rows and usplaces should have 769 rows, if you JOIN the two together
without a limit or WHERE statement:

SELECTing from both tables without a WHERE or JOIN will produce 39,219 rows: the Cartesian Product.
usstates LEFT JOIN usplaces [...] GROUP BY usstates.state should produce 51 rows exactly.
A result of zero rows returned means that the specified columns in the JOIN do not contain any matching
values.
It's certainly possible that the number of rows returned does not match the above values. You should use
the row returned value as another check on your process. Ask yourself if the number of rows returned is
what you expect and why you think you might have received the number returned.

Performing the Count
Let's perform a spatial join between the usstates and the usplaces to get a count of place points in each state.
First, how do we ultimately want to show this count? A choropleth map would work, so we will need the state
boundaries (usstates.shape) and a count of points in each state (COUNT(usplaces.shape)). A state name field
would help, too.

SELECT s.name, s.shape, COUNT(p.shape)
FROM usstates s
JOIN usplaces p ON ST_Contains(s.shape, p.shape)
GROUP BY s.name, s.shape;

The test for the JOIN is if the statement evaluated after "ON" is true. In this case, ST_Contains returns True if
s.shape contains p.shape. This is an example of a function that takes two geometry types and returns a boolean
(true or false) type as a result.

Speeding Things Up
Indexes are a crucial component when building your database. An index allows the query planner to focus its
search on certain sets of rows within a table. While we have been working on smaller datasets, we will naturally
work on more complex data as we continue our efforts. Also, recalling the Cartesian Product and how every
possible combination must be evaluated (or shortcutted using an index scan) when performing a join, spatial
functions are much more computationally intensive than comparing two integers.

Revisit your previous query, but this time, add a special command to the beginning:

EXPLAIN SELECT s.name, s.shape, COUNT(p.shape)
FROM usstates s
JOIN usplaces p ON ST_Contains(s.shape, p.shape)
GROUP BY s.name, s.shape;

EXPLAIN tells the Query Planner to return the steps it will take to return the desired result. Running the command
above should produce a result similar to the one included below.

Spatial SQL Workbook

16 of 24

GroupAggregate (cost=14444.85..14450.47 rows=51 width=18224)
 -> Sort (cost=14444.85..14446.13 rows=511 width=18224)
 Sort Key: s.name, s.shape
 -> Nested Loop (cost=0.00..10435.36 rows=511 width=18224)
 Join Filter: ((s.shape && p.shape) AND _st_contains(s.shape, p.shape))
 -> Seq Scan on usplaces p (cost=0.00..21.69 rows=769 width=56)
 -> Materialize (cost=0.00..20.77 rows=51 width=18168)
 -> Seq Scan on usstates s (cost=0.00..20.51 rows=51 width=18168)

While there is valuable information in the output of the EXPLAIN command, it can be overwhelming. As you begin
to troubleshoot your queries, looking for Seq Scan should be a top priority. A Sequential Scan of your table is
going to be very expensive, especially as you deal with larger tables and more expensive functions, such as
ST_Contains() .

We can reduce the time PostgreSQL needs to complete this query by building an index. Indexes can be thought
of as specialized lookup tables, where the Query Planner can find certain values quickly. Indexes can be built on
most data types, such as text strings, integers, dates, and spatial data.

Let's now build an index on the shape spatial column in both tables.

CREATE INDEX ON workspace.usstates USING gist(shape);

CREATE INDEX ON workspace.usplaces USING gist(shape);

We can now re-run the EXPLAIN query and review the results. An example is included below.

GroupAggregate (cost=4137.02..4142.64 rows=51 width=18224)
 -> Sort (cost=4137.02..4138.30 rows=511 width=18224)
 Sort Key: s.name, s.shape
 -> Nested Loop (cost=0.00..127.53 rows=511 width=18224)
 -> Seq Scan on usstates s (cost=0.00..20.51 rows=51 width=18168)
 -> Index Scan using usplaces_shape_idx on usplaces p (cost=0.00..2.09 rows=1
width=56)
 Index Cond: (s.shape && shape)
 Filter: _st_contains(s.shape, shape)

There are some important differences between the latest Query Plan and the one from before the spatial indexes
were built.

While there is still a Sequential Scan on usstates , the Query Planner is now using an Index Scan on
usplaces_shape_idx , the index built on the usplaces table. The Query Planner decided that it should still
scan every record in usstates , probably because it is only 51 records. If we performed this same test against
places and admin1 , it might rely on both indexes.

Also take note of the "cost" figures in both Query Plan explanations. The cost is a unitless value that denotes the
relative cost of performing the steps of the query. The cost values are added up as you move up the hierarchy of
steps. In comparing the two plans, you can see that the Nested Loop step - there and below are the steps
necessary for our join - now has a greatly reduced cost.

Finally, take note of the Index Cond and Filter lines in the latter Query Plan explanation. These similar steps
were performed previously at the Join Filter step. The && operator is a spatial operator that evaluates the

Spatial SQL Workbook

17 of 24

bounding box of two spatial features. When we built the spatial index on these two tables, we created an index of
the bounding box of each geometry stored in the shape column. It is much easier to quickly compare if one
feature is contained by another by comparing their bounding boxes. If the boxes do not overlap, it is certain that
the one feature will not contain the other. Also note that the function is represented slightly differently here. We
called ST_Contains() and _st_contains() is being used in its place.

If you navigate to the "Functions" section in the public schema, you will find all the functions for PostGIS, as
well as other functions available to you in this database. Find the entry for st_contains(geometry,geometry)
(without the initial underscore) and review the function. The _st_contains() function is what performs the
contains comparison, checking the actual geometries of the features passed into the function. ST_Contains()
makes sure that the bounding box comparison is performed first and in nearly all cases, this will result in the
spatial join performing more quickly, as long as the spatial index on the features exists.

Updating Time Zone Field
Let's perform a quick check to see if there are any missing values in the usplaces.timezone field. How can we
quickly determine if there are any missing values in that field?

First, let's COUNT the number of NULLs in that field.

SELECT COUNT(*) FROM usplaces WHERE timezone IS NULL;

Returns 77 records.

Return to the database's public schema. In the public schema, you will find a table called "timezones". The
timezones table contains the timezone boundaries, plus a column called "tz_name" that follows the same format
of the usplaces.timezone field. Additional reading if you're curious about the time zone database.

Let's SELECT all usplaces and bring in the tz_name field from public.timezones.

SELECT p.shape, p.name, t.tz_name
FROM usplaces p
JOIN public.timezones t
ON ST_Contains(t.shape, p.shape);

You should see that there are 769 rows returned. To check for completeness, run the following:

SELECT p.shape, p.name, t.tz_name
FROM usplaces p
JOIN public.timezones t
ON ST_Contains(t.shape, p.shape)
WHERE t.tz_name IS NULL;

And you should receive zero rows back. That's a good thing! It means that we have a time zone (supplied by
public.timezones) for each record in usplaces. However, those values have not yet made it back into the usplaces
table. Run the first query in this section again and again you will see that a count of 77 null records will be
returned.

We can UPDATE the usplaces table to replace all of the values in the usplaces.timezone column with the
appropriate values from the public.timezones table. Now, because you created your usplaces table in your
schema, you have the permission to update the table. Don't worry about making a mistake, you don't have the

Spatial SQL Workbook

18 of 24

permission to change the tables in the public schema, so in the absolute worst-case scenario, you will need to
DROP the tables in your schema and recreate them.

UPDATE statements take the following form:

 UPDATE [table to be updated]
 SET [column] = [new value]
 FROM [other tables] -- note: this line optional
 WHERE [condition]

We will update the records in usplaces using the public.timezones table, like so:

 UPDATE usplaces p
 SET timezone = t.tz_name
 FROM public.timezones t
 WHERE ST_Contains(t.shape, p.shape)
 AND p.timezone IS NULL;

Our WHERE statement has two conditions. The first is that the timezones shape must contain the usplaces shape.
This defines our spatial relationship between the two tables. Like referenced above, this is a shorthand way of
defining an INNER JOIN. Second, we only want to update timezone values in usplaces if they are currently NULL.

Run the above statement. Then, run the first statement in this section again. You should receive a count of 0 rows,
as there are no longer any NULL values in the usplaces.timezone column.

Creating a US-only Time Zone Map
While there are functions for testing spatial relationships, there are also functions for acting upon those
relationships to create new data. We can use two similarly named functions to produce a new GIS table that will
contain the spatial intersection of the Time Zones and the US States.

ST_Intersects(a.shape, b.shape) tests whether geometries in Table A intersect those in Table B. This
function returns a boolean type; TRUE if the geometries intersect, FALSE if they do not.
ST_Intersection(a.shape, b.shape) performs a spatial intersection on two input geometries. This function
returns a geometry type. If the two input geometries do not intersect, the function returns a NULL
geometry.

We will use both of these functions to perform the intersection of these two tables.

We will want the following columns from usstates:
name
region
postal

We will want the following columns from public.timezones:
zone
tz_name
utc_format

Finally, we will need to generate two new columns:
In place of a shape column from either table, we will use the ST_Intersection function within the list
of columns, calling this newly generated column "shape". Essentially, we will feed the two shape
columns from both tables to ST_Intersection and use the geometries returned from the function as
the new table's "shape" column.

Spatial SQL Workbook

19 of 24

We cannot use either table's primary key as the primary key for the new table, as there will be
duplicates. For example, Indiana is split by two timezones. If we use IDs from usstates, there will be
at least two duplicate values for each state divided by a timezone. We cannot use the timezone IDs,
because each timezone intersects several geometries in usstates, leading to even more duplicates.

To solve this issue, we need to create a new id for the new table. PostgreSQL has sequences, specialized
counters for dealing with this type of issue. We can make a new temporary sequence to populate the id column of
our new table. We will use a temporary sequence because we will only use it for this one operation. Marking it as
temporary saves you the step of explicitly deleting it later using DROP SEQUENCE. It will be removed
automatically when you disconnect from the database.

Let's first perform a dry run by using just a SELECT. Once we're happy with the output of the SELECT statement,
we will create the sequence, update the SELECT and use it in conjunction with CREATE TABLE ... AS.

SELECT 0 AS id, -- placeholder for the sequence
 ST_Intersection(s.shape, tz.shape) as shape,
 s.name, s.region, s.postal,
 tz.zone, tz.tz_name, tz.utc_format
FROM usstates s, public.timezones tz
WHERE ST_Intersects(s.shape, tz.shape);

When you run the above, you should receive 80 rows. Inspecting the rows, you'll see that there are some
duplicate state names. This is okay, because some states split between timezones will have a record for the
portion of the state in one zone and another record for the portion in the different zone.

Let's now make this an actual table.

-- creates the sequence
CREATE TEMPORARY SEQUENCE newid START WITH 1;

-- creates the new table
CREATE TABLE ustimezones AS
SELECT nextval('newid') AS id,
 ST_Intersection(s.shape, tz.shape) as shape,
 s.name, s.region, s.postal,
 tz.zone, tz.tz_name, tz.utc_format
FROM usstates s, public.timezones tz
WHERE ST_Intersects(s.shape, tz.shape);

-- adds the id column as the primary key
ALTER TABLE ustimezones ADD PRIMARY KEY (id);

To confirm that you successfully performed the intersection, you can now run:

SELECT * FROM ustimezones;

And see that you have a new table, with 80 rows and an ID field with unique values. Congratulations!

Moving on to Advanced Topics
In the next section, we will be using New Jersey specific data. Before you move on, confirm that you have been

Spatial SQL Workbook

20 of 24

able to create a usstates table in your schema, that you have updated your usplaces table to remove the NULLs
from the timezone field and that you have created a US Time Zones table.

I strongly suggest you reach out for assistance if the previous steps have not been clear.

New Jersey Reports
A "new_jersey_reports.qgs" file is available for you to use. It has the New Jersey data sets predefined so that you
can easily visually inspect them.

Using the SQL concepts you learned above, create tables or views to answer the following questions.

Count of Fire Stations within Municipality
How many fire stations are there in each NJ municipality?

Produce a table called fire_station_count that contains 565 rows and the following columns:

Municipal Code (unique 4 character string: for example Atlantic City is '0102')
County Name
Municipality Name
Count of Fire Stations within each Municipality

For extra credit: include the municipality's geometry in the new table. Make a basic choropleth map of the number
of fire stations in each municipality using QGIS or ArcGIS.

Municipalities Along Bus Routes
NJ Transit is exploring how changes to its bus service will affect municipalities. To begin this analysis, the research
team has asked you to assemble a few basic reports.

Create a table called camden_routes that is a simple list of Route Numbers that pass through Camden City.

You will need to make a Spatial Join between nj_muni and nj_busroutes using ST_Intersects(). You will also need
to use WHERE to limit the municipalities to just Camden City. You only need to select the public.nj_busroutes.line
column to get a list of routes. Also, the list should be ordered and unique (using the DISTINCT keyword).

Create another table called route410_munis that is a simple list of municipality names where the Route 410 bus
passes through the municipality.

You will again make a Spatial Join between nj_muni and nj_busroutes using ST_Intersects(). You will need to use a
WHERE to limit the bus routes to just those where LINE = 410. The table should have two columns, "county" and
"mun" from the nj_muni table and the rows should be ordered by county name, then municipality name.

Municipalities Within the Pinelands
The Pinelands boundary encompasses a very large area in South Jersey. The boundary, in many cases, cuts
through a municipality instead of following the municipal boundaries.

Make two tables that contain county and municipal names. The first table, called pinelands_munis will contain
the county and municipal names for every municipality that intersects the nj_pinelands boundary. The second
table, called pinelands_within, will have the same schema as pinelands_munis (county and municipal name), but
will only contain records for the municipalities that are completely contained by the nj_pinelands boundary.

Urban Municipalities
Let's return to the Natural Earth data and see how we can incorporate that into our New Jersey data. There is the
urban_areas data that denotes areas of significant urban development. Let's compare it to the New Jersey

Spatial SQL Workbook

21 of 24

municipalities data to see how many NJ municipalities intersect or completely fall within the urban areas.

There is one major catch - the Natural Earth data is in WGS84 and the New Jersey data is in New Jersey State
Plane. We can confirm that using the following queries:

SELECT DISTINCT ST_SRID(shape)
 FROM nj_muni;

SELECT DISTINCT ST_SRID(shape)
 FROM urban_areas;

The ST_SRID() returns the Spatial Reference ID, a numerical value that represents the coordinate system of the
geometry in the shape column. The DISTINCT clause de-duplicates the result set, that way we only see one
numerical value instead of a long list of the same value, as ST_SRID() is executed on each value in the shape
column.

You will see that the values are different. WGS84 is represented as 4326 while New Jersey State Plane is 3424.
More information about these Spatial Reference IDs can be found at http://spatialreference.org/.

PostGIS provides you with a function to transform a geometry to a different coordinate system. ST_Transform()
takes two arguments, a geometry and an integer SRID, and it returns the passed geometry in the new projection.

Write a query that returns a list of municipality names and their counties that are completely contained by the
urban areas. Then, write a query that returns the municipalities that are completely outside of the urban area.

Here are a few hints:

Consider the types of JOINs you can use. You might want to consider an INNER JOIN for the "contains"
query, but that will not work for a query where you want the records that do not spatially intersect.
ST_Transform() can be used in the JOIN ... ON clause, nested within ST_Contains() ,
ST_Intersects() , or any other function that expects a geometry.
Either ST_Transform(nj_muni.shape, 4326) or ST_Transform(urban_areas.shape, 3424) could
work, but you might need to experiment with either (but not both!) to get your query to work.

Airports within a Distance from New Jersey
In the airports data from Natural Earth, there is only one airport located in New Jersey. (You could quickly
confirm the airport by writing a query using airports and nj_muni .) How can we write a query that returns a
list of airports within a certain distance (10 miles or 52800 feet) from New Jersey?

One way to write such a query is to use the ST_Buffer() function, then use the resulting buffers to see if any of
the records in airports intersect or are contained by the buffers from New Jersey. ST_Buffer() accepts two
arguments, a geometry and a distance to create the buffer, in the same linear coordinates as the input geometry's
coordinate system. For New Jersey State Plane, the second argument to ST_Buffer() would be in US Feet.

You might be inclined to write a query like this:

Spatial SQL Workbook

22 of 24

SELECT a.name, a.iata_code
 FROM airports a
 JOIN nj_muni n
 ON ST_Intersects(a.shape,
 ST_Transform(ST_Buffer(n.shape, 5280*10),4326)
)

While the above is perfectly valid, it is very inefficient. If you request the query plan with EXPLAIN , you will see
that it is performing a sequential scan on both data sets, performing a very expensive function (buffer and
transform) on each row of nj_muni , over every row in the airports table. This query will take a very long time
to complete and you may want to consider the how to reduce the number of items in the Cartesian Product of
nj_muni and airports .

First, we're evaluating if something is near New Jersey by comparing it to the 565 municipalities that make up the
state. We should evaluate - and perform a buffer function on - the overall outline of the state, not the individual
municipalities.

We could also create a new table to store our "nj_buffered" data, that represents New Jersey thus:

All 565 municipalities merged into one polygon.
Buffered the specified distance
Transformed to 4326, WGS84

However, we might not want to keep a table on disk with this information. We might also be on a system where
we do not have the privileges to create our own tables. How could we "trick" the query planner into performing
the expensive tasks only once?

A Common Table Expression, also known as a "WITH" clause, allows us to effectively create a temporary table for
the purpose of completing a query. The temporary table or tables created in a WITH clause only exist within the
scope of the query. Each temporary table in the WITH clause can be referenced in the main query in the same way
any regular table or view can be referenced.

Here's a shell of a query that you can use to write your optimized query to locate airports within 10 miles of New
Jersey:

WITH nj_buffered AS (
 SELECT [functions to process NJ municipalities] as SHAPE
 FROM nj_muni
)
SELECT a.name, a.iata_code
 FROM airports a
 JOIN nj_buffered n ON [spatial join type]

WITH clauses are very important to understand when optimizing your queries in PostgreSQL. Most database
systems have a method for the operator to override how the query planner will plan the execution of a query.
Oracle has "hints" - special comments embedded in the query that tell the Query Planner to use a different
method to bring the data together. PostgreSQL uses the WITH clause/CTEs to act as an optimization fence. CTEs
can be used to great effect in making your queries perform better.

Next Steps
Hopefully, this workshop has achieved its goals in explaining how databases can be further integrated into your

Spatial SQL Workbook

23 of 24

GIS workflow. There still remains much to learn; with any available time, we can discuss and walk through the
following:

Importing Data in to PostgreSQL/PostGIS
Exporting Data to Different Formats
Differences Between PostGIS and ArcSDE
Materialized Views
Data Warehousing

Closing
Directly manipulating spatial data using SQL can provide for many new opportunities for streamlining your work.
Queries to load, extract, analyze, and process data can be run on a schedule or be integrated into other
workflows. Getting the most out of the technologies in your toolbox will enable you to do far more than you may
have previously thought.

Spatial SQL Workbook

24 of 24

